
Physics 566: Quantum Optics I 
 

Problem Set 1 
Due Tuesday, September 2, 2013 

 
 

Problem 1: Weiner-Khintchine Theorem (10 Points) 
Consider a real function of t that is a random variable, f (t) , with stationary statistics, i.e., all 
correlation functions depend only on the time-differences.  Thus, the autocorrelation function 
satisfies f (t1) f (t2 ) = f (0) f (t2 − t1) = K(t2 − t1) . 
 

(a) Defining the Fourier transform in our usual way, 
 

f (ω ) = f (t)e+ iωt dt
−∞

∞

∫ , show that  

 

 
f *(ω ) f ( ′ω ) = 2πS(ω )δ (ω − ′ω ) , 

 

where S(ω ) = K(τ )e+ iωτ dτ
−∞

∞

∫  is the Fourier transform of the autocorrelation function. 

 
The important take-away messages are: 

• The frequency components of stationary random field are uncorrelated with one another. 
• The function S(ω ) is known as the spectral density. S(ω )dω  is the amount of “power” in 

a given spectral band dω   around ω. 
• For a stationary field, the spectral density and the autocorrelation function are Fourier 

transform pairs.  This is the Weiner-Khintchine Theorem. 
 
(b) Consider the complex correlation function that determines temporal coherence in a standard 
interferometer 

 
Γ(τ ) = E*(0) E(τ ) , where  E(t)  is the complex analytic signal, 

 
E(t) = Re E(t)⎡⎣ ⎤⎦ .  

Show that 
 

1
2
Re Γ(τ )[ ] = S(ω )e− iωτ dω

2π−∞

∞

∫ ,    S(ω ) = 1
2
Re Γ(τ )[ ]e+ iωτ dτ

−∞

∞

∫ , 

 
where 

 
E*(ω ) E( ′ω ) = 2πS(ω )δ (ω − ′ω ) . 

 
Take away message: 

• The temporal coherence of a (stationary) field as measured in a standard interferometer 
is determined by the spectrum of the input field via a Fourier conjugate pair.  A very 
narrow-band (monochromatic) field has a long coherence time, and a broad-band field 
has a short temporal coherence time. 

 
(c) What is the power spectrum of natural light arising from a collision broadened source?  Sketch 
the output intensity from a Mach-Zender interferometer. 
 
  



Problem 2: Natural Light (15 Points) 
As discussed in Lecture 2, natural light arising from, e.g. stars, is not coherent.  The phase of the 
field fluctuates, and is only well correlated for a short ``coherence time.”  One source of those 
fluctuations is random collisions between the radiators.  Let’s fill in some of the details  
 
(a) Let Ps (t)  be the “survival probability,” i.e., the probability that the molecule freely oscillates 
and survives a time t without a collision.  Under the assumption that the time of the next collision 
is independent of the previous (such as random process is said to be Markovian – there is no 
“memory” of the previous trajectory), show that  
 

Ps (t) = e
−γ t , where γ  is the rate of collisions, 

 
(b) Show that the probability that the oscillator free oscillates for time t and then suffers a 
collision between times t and t+dt is 
 

p(t)dt = e− t /τ 0 dt
τ 0

, where τ is the average time between collisions.  Express τ in terms if γ. 

 

Use the kinetic theory of gases to show that 1
τ 0

= nσ 0vrel , where n is the density of molecules, σ0 is 

the collision cross section and vrel is the average relative speed of the molecules.  What is vrel for a 
gas in thermal equilibrium? 

 
(b) The electric field produced by each of the oscillators will has a random phase, Ei (t) = E0e

− iωteiφi (t ) .  

The total field E(t) = E0e
− iωteiφi (t ) =

i=1

N

∑ E0e
− iωtα (t) = E0e

− iωta(t)eiϕ (t ) , where α (t)  is the random complex 

amplitude, a(t) = α (t)  and ϕ  is overall the random phase.   Argue that for N large, the probability 
of a given complex amplitude is Gaussian distributed in amplitude, and independent of phase 
 

p(α (t)) = 1
πN

e−α (t )
2 /N  

 
(c) Argue (filling in details from lecture) that under the ergodic assumption (the random signal 
samples different values according to the given probability distribution, so ensemble averages 
equal time averages), the two-time correlation function is 
 

E*(t)E(t +τ ) = NE0
2e− iωτe−τ /τ 0  

 
(d) The electric field, on average is zero, but there are fluctuations around the average.  This 

implies that the intensity I(t) = E(t) 2  fluctuates.  Using E(t) = E0e
− iωteiφi (t )

i=1

N

∑ , show that  

 
I(t) = NE0

2 , I(t)( )2 = 2 I 2 ⇒ΔI = I , and generally the probability distribution of intensities is  

P[I(t)] = 1
I
e
− I (t )

I ⇒ I(t)( )n = n! I n

 
 



Problem 3:  Lorentz oscillator model of scattering (10 points) 

Consider the scattering of an electromagnetic wave by a damped Lorentz oscillator 

 
(a)  The absorption cross section, σabs, is defined as the rate at which energy is absorbed by an 

atom, divided by the incident flux of energy, the intensity I = c
8π
|E0 |

2  (CGS units). Show that 

the classical model of absorption gives, 

 

σ abs,class =
2π 2e2

mc
g(ω L ) ,  where g(ω ) = Γ rad / (2π )

(ω −ω eg )
2 + Γ rad

2 / 4
 is the line shape. 

Assume near resonance so that 

� 

Δ = ωL −ω0 << ωL ,ω0 . 

 

(b) In the case of radiative damping, all energy absorbed is re-radiated, and is thus scattered.  Use 

standard scattering theory to derive the differential scattering cross section for the Lorentz 

oscillator model, dσ scat

dΩ
, and after integrating over all solid angles, show that the total scattering 

cross section equals the absorption cross section found in part (a).  Here take Γ rad =
2
3
e2

mc3
ω 0

2.  

 
(c) We can re-derive the expression for the classical natural linewidth Γ rad  that we found in class 

via radiation reaction by looking directly at energy conservation in the scattering process.  For the 

field on resonance, equate the time averaged absorbed power (rate at which field does work on 

electron, averaged over a period of oscillation) to the Lamor formula for the averaged radiated 

power to show, 

Γ rad =
2
3
e2

mc3
ω 0

2 = 2
3
k0 rc( )ω 0 , where rc  is the classical electron radius. 

 

Evaluate this for the case the sodium “D2 resonance” (the yellow light in stree light), of 
excitation wavelength is 589 nm.  The quantum decay rate is Γ / 2π = 9.8 MHz.  What is the 

oscillator strength of the transition? 

 

(d) Show that the scattering cross section can be rëexpressed as 
 
σ scat =

6π 0
2

1+ 4Δ2 /Γ rad
2( ) , where  

  0 = λ / 2π .  This expression holds true quantum mechanically as well with Γ rad →Γ . 

E cos(    t)Lω


